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Data on synthetic jets suggest that planar and axisymmetric turbulent synthetic jets exhibit self-similar-
ity in the far field. A similarity analysis, similar to that of continuous turbulent jet, for both these two-
dimensional cases, has been undertaken in this paper. Important differences between synthetic and con-
tinuous jets arise because of a larger spread rate in the case of synthetic jets. The analysis predicts the
same streamwise variation of velocity and spread rate with synthetic jets as the corresponding continu-
ous jets. It is argued that to first order, the momentum flux with contribution from both mean and fluc-
tuating velocity should be conserved in the self-similar region, but with a value less than that supplied at
the source. The predictions of similarity analysis are supported by the experimental data.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Synthetic jets are produced by periodic ejection and suction of
fluid from an orifice induced by movement of a diaphragm inside
a cavity [1,2], among other ways. From the flow visualization
images of Verma and Agrawal [3] the following sequence of jet for-
mation can be gathered. At low Strouhal numbers, a train of vorti-
ces forms due to movement of the diaphragm; these vortices travel
away from the orifice if the Strouhal number is larger than a critical
value (jet formation criteria) [4]. The distance between the vortices
reduces with streamwise coordinate at higher Strouhal numbers,
and the vortices eventually merge to form a laminar jet. With a fur-
ther increase in Strouhal number, an instability appears in the near
field which breaks down the laminar structure of the jet, in to first
a transitional jet, and then a fully turbulent jet [5]. The synthetic
jets are expected to find important engineering applications like
in boundary layer separation control, jet vectoring, heat transfer
enhancement, better mixing of fuel in the engine combustion
chamber, creation of local turbulence, and vehicle propulsion
(see example Refs. [6–9], among others).

The synthetic jets are zero-net-mass-flux flows because the
mass ejected from the cavity during the ejection stroke is exactly
balanced by the mass sucked during suction. Although no net mass
is added at the orifice, there is a net addition of momentum due to
the movement of the diaphragm, and a jet forms due to entrain-
ment of ambient fluid as this momentum pulse travels down-
stream. On the other hand, conventional jets are formed by the
addition of both mass and momentum at the orifice [10–12]. Un-
like synthetic jets, the momentum flux in conventional jets re-
mains conserved [1]. Due to the difference in formation between
ll rights reserved.
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the two jets, the near-field behaviour is expected to be different.
For example, there is no potential core in synthetic jets as opposed
to conventional jets [5,13].

However, both these types of jets are known to exhibit self-sim-
ilarity beyond a certain distance from the orifice; this distance is
comparable between synthetic and continuous jets. For example,
the experimental data of Mallinson et al. [14] suggest that an axi-
symmetric turbulent synthetic jet exhibits self-similarity at about
10 times the orifice diameter. Cater and Soria [5] report a distance
of 15 d (where d is the orifice width or diameter) based on mean
velocity and 25 d based on Reynolds stress. Verma [13] found this
distance to be about 10 d based on the decay of centerline velocity.
Smith and Swift [15] reported self-similarity beyond 13 d for a pla-
nar turbulent synthetic jet. Fugal et al. [16] argue that the displace-
ment amplitude is the more relevant length scale for determining
the self-similar distance. The self-similarity is mostly deduced by
the good collapse of mean velocities or Reynolds stresses on to a
single curve. The primary simplification that results from self-sim-
ilarity is that a single velocity scale (mean streamwise velocity at
the centerline) and length scale (jet half-width), are adequate to
non-dimensionalize the flow parameters [17–19].

In this paper, a similarity analysis similar to that of continuous
jets is undertaken, with experimental observations reported in the
literature serving as a guide for analysis. Specifically, we note that
the spread rate of synthetic jets is larger than their continuous coun-
terparts (this is evident from the flow visualization images [5,13]
and Table 2 presented later), and that the momentum flux of syn-
thetic jet based on just the mean velocity is not constant [1]. This
analysis leads to the prediction of streamwise variation of velocity
and length scales, which can be used for benchmarking subsequent
datasets. The implications of the analysis are compared with those
of continuous jets. To the best of authors’ knowledge, this is the first
attempt of performing similarity analysis on synthetic jets.
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Nomenclature

c spread rate of the jet (¼ dl=dx) (–)
c2 constant (–)
d diameter or width of the orifice (m)
l jet half-width (defined as UðlÞ=Us ¼ 0:5) (m)
L distance from the orifice (m)
M momentum per unit depth per unit time (kg/s2)
P time-averaged pressure (also scale for pressure) (Pa)
r cross-stream coordinate for axisymmetric case (m)
Rel Reynolds number (= ul=m) (–)
u fluctuating velocity scale (m/s)
u2 Reynolds stresses (m2/s2)

uv Reynolds stresses (m2/s2)
v2 Reynolds stresses (m2/s2)
U time-averaged streamwise velocity (m/s)
Us time-averaged centerline velocity (m/s)
V time-averaged cross-stream velocity (m/s)
x coordinate along the axis (m)
y cross-stream coordinate for planar case (m)
m kinematic viscosity of the fluid (m2/s)
q density of the fluid (kg/m3)
n non-dimensional cross-stream coordinate (¼ r=l for

axisymmetric case, ¼ x=l for planar case) (–)

A. Agrawal, G. Verma / International Journal of Heat and Mass Transfer 51 (2008) 6194–6198 6195
2. Derivation of equations

In this section, we follow the approach of Tennekes and Lumley
[17] to derive the governing equations of synthetic jets in the self-
similar region. The standard Reynolds decomposition for velocities
and pressure has been applied in the present work; triple decom-
position involving time-averaged, phase averaged and turbulent
fluctuations is not required in the self-similar regime of synthetic
jets, although such a decomposition may be useful near the orifice.
The symbols introduced have been defined in the Nomenclature
section.

2.1. Planar synthetic jet

The time-averaged streamwise momentum equation can be
written as [17]
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where, P is pressure, m is kinematic viscosity and q is density. Esti-
mating the order of magnitude of the various terms, we have
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In the above equations, the mean streamwise velocity, U, has been
normalized by the mean centerline velocity, Us; the mean cross-
stream velocity, V , by Usl=L; the streamwise distance, x, by the
distance from the orifice, L; cross-stream coordinate, y, by the jet
half-width, l (defined as UðlÞ=Us ¼ 0:5); and the Reynolds stresses,
uv or u2, by u2. (Due to self-similarity, relation between some of
the scales introduced above is possible.) The magnitude of pressure
in Eq. (4) is not known, and therefore has been left as such (for con-
ventional jets [17], P � qu2; note that the same symbol P is used for
both pressure and pressure scale).

In the limit of large Reynolds number, Rel (¼ m=ul), the viscous
terms Eqs. (5 and 6) can be dropped. Further, for conventional jets,
Tennekes and Lumley [17] argue that since l=L is small, terms rep-
resented in Eqs. (4) and (7) can be neglected in Eq. (1), which leads
to the following simplified equation for planar turbulent conven-
tional jet:
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However, based on the observation that the spread rate of synthetic
jets is substantially larger than conventional jets, we refrain from
making this latter simplification. For example, Smith and Glezer
[1] report l=L ¼ 0:194 for planar turbulent synthetic jet. Therefore,
the following simplified equation is instead obtained for synthetic
jet:
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While writing the above equation, it has been assumed that the
terms in square brackets in Eqs. (2) and (3) are of order unity, which
implies that ðu=UsÞ2 � l=L, or, because l=L has been assumed to be of
order unity, u=Us is also of order unity. Note that the pressure term
has been retained in the above equation because the scale of pres-
sure is yet to be determined (we will however find that the pressure
term can be dropped from the equation). In order to estimate the
magnitude of pressure, the cross-stream momentum equation is
considered.

The time-averaged cross-stream momentum equation can be
written as
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The first two terms in the above equation scale as ½ðUs=uÞ2ðl=LÞ2��
u2=l; the next two terms on the left scale as ðl=LÞ � u2=l and 1 � u2=l,
respectively. The viscous terms on the right scale as ½ð1=RelÞ
ðUsl

3
=uL3Þ�:u2=l and ½ð1=RelÞðUsl=uLÞ� � u2=l, respectively; and the

pressure term remains undetermined. As before, the viscous terms
drop-off in the limit of large Reynolds number. For a conventional
jet, under the assumption that l=L is small, ouv=ox can be neglected;
further, because ðu=UsÞ2 � l=L, the first two terms in the above
equation also drop-off, leaving pressure to balance ov2=oy. The
cross-stream momentum equation simplifies to ov2=oy ¼ �1=q�
oP=oy in the case of conventional jets, leading to P � qu2 [17].

However, for synthetic jets, such simplification is not possible
because both u=Us and l=L are of order unity. Therefore, all the
three non-linear terms – UoV=ox, VoV=oy and ouv=ox, being of
the same order as ov2=oy, need to be retained. Hence, there is no
requirement for pressure to balance ov2=oy, or pressure to scale
as qu2. Rather, we believe that, pressure should not scale as qu2,
else it would affect both the streamwise and cross-stream momen-
tum equations Eqs. (10) and (11), which is unlikely for a jet dis-
charged in an otherwise undisturbed surrounding [16,20].
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The experiments of Smith and Glezer [1] suggest an important
role for pressure near the orifice. They reported that pressure at
the exit plane is proportional to r�2

0 , where r0 is the radial distance
from the orifice. Therefore, the flow experiences an adverse pres-
sure gradient near the orifice. Although this gradient would persist
in the self-similar regime, we do not expect pressure to signifi-
cantly alter the momentum of the jet in the self-similar regime
[5], and therefore neglecting pressure gradient in the momentum
equations, for the self-similar regime, should be justified.

Therefore, finally, the cross-stream equation Eq. (11) for a pla-
nar synthetic jet simplifies to
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and the streamwise equation Eq. (10) to
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It can be easily verified that integrating Eq. (13) between the limits
y ¼ �1 to y ¼ þ1 with the help of continuity equation
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where M is a constant. The last two terms in Eq. (13) drop-off upon
integration because both U and uv tend to zero in the limit y! �1.
Note that M is not the total amount of momentum added at the ori-
fice per unit depth per unit time by the diaphragm, rather less than
it. The difference lies because of the adverse pressure gradient near
the orifice mentioned above, which reduces the momentum in the
self-similar region. Also note that Eq. (15) implies that the momen-
tum of the jet calculated based on mean velocity alone will not be
constant, rather the effect of streamwise velocity fluctuations also
needs to be taken into account in the calculation of momentum.

Smith and Glezer [1] showed that the normalized momentum
flux (obtained by integration of the fitted velocity profile) along
the streamwise coordinate, is always less than unity. An asymp-
totic value of 0.55 was suggested by their experiments, which is
consistent with Eq. (15) and the discussion following this equation.
Further support for an asymptotically constant value of momen-
tum flux is provided by the numerical simulations of Fugal et al.
[16].

The above mentioned momentum equation Eq. (15) has been
used by some researchers for continuous jets also (e.g. Ramaprian
and Chandrasekhara [10]). The difference in the integral momen-
tum equation of synthetic and continuous jet is therefore pointed
out. To a first order effect, the momentum flux in continuous jets
is calculated using mean streamwise velocity only [17,18]. There-
fore, unlike their conventional counterparts, the velocity fluctua-
tions play a more important role (and not merely appear as a
second-order effect) in the case of synthetic jets.

2.2. Axisymmetric synthetic jet

The analysis for axisymmetric turbulent synthetic jet follows its
planar counterpart. Starting with the time-averaged streamwise
momentum equation [18]
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and performing an order an magnitude analysis for the various
terms in the self-similar region, in a manner similar to that dis-
cussed above, we obtain:
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In the above equations, r is the cross-stream coordinate. In reducing
Eq. (16) to Eq. (17), again it has been assumed that both u=Us and l=L
are of order unity and the Reynolds number is large. The corre-
sponding cross-stream momentum equation is
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where, w is the fluctuating component of azimuthal velocity. The
integral form of momentum equation can be obtained by integrat-
ing Eq. (17) from r ¼ 0 to 1.

3. Similarity solution

The streamwise variation of centerline velocity and jet half-
width in the self-similar region are derived in this section. The
analysis is first performed for planar synthetic jet, followed by its
axisymmetric counterpart.

Let us assume

U ¼ Usf ðnÞ; ð19Þ
uv ¼ U2
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u2 ¼ U2

s HðnÞ; ð21Þ

where f , h and H are some functions (to be determined empirically)
of n, and n is the normalized cross-stream coordinate (n ¼ y=l for
planar case and n ¼ r=l for axisymmetric case). The cross-stream
velocity can be determined from Eq. (19) and the continuity equa-
tion Eq. (14) as
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On substituting Eqs. (19)–(22) in Eq. (13), and noting that both Us

and l are functions of x only, we obtain
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For self-similarity to hold, we require that the coefficients in the
above equation should be constant, which yields

dl
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l
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where c and c2 are constants (to be determined empirically). Note
that these are the same conditions as for conventional jets [17].
While Eq. (23) suggests that l � x, Eq. (24) can be satisfied by any
power law Us � xn. The value of n can be determined by invoking
Eq. (15) along with Eqs. (19) and (21) to get n ¼ �1=2. Therefore,
both the mean and turbulent velocity scale should vary as x�0:5.

The above analysis can be repeated with axisymmetric syn-
thetic jets to obtain l � x and Us � x�1, in agreement with their
continuous counterparts [13]. The turbulent velocity scale should
also vary as x�1 in the axisymmetric case.

4. Discussion

The results derived in the previous section are first validated
and then the underlying assumptions in the analysis are justified



Table 2
Comparison of length and velocity scales, as obtained from experiments, for synthetic
and continuous jets

Planar Axisymmetric

Synthetic [1] Continuous [10] Synthetic [5] Continuous [12]

l=L 0.194 0.110 0.107 0.092
u2=U2

s 0.07 0.04 0.31a, 0.13b 0.068
v2=U2

s 0.05 0.029 0.09a, 0.07b 0.04
uv=U2

s 0.025 0.02 0.04a, 0.02b 0.02

a Reynolds number = 1000 (x=d ¼ 30).
b Reynolds number = 10000 (x=d ¼ 30).
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by comparison against experimental results in the literature. Some
extensions of the analysis are also discussed in this section.

4.1. Validation

Table 1 presents a comparison of streamwise variation of the
centerline velocity and jet half-width from the present analysis
with respect to the experimental data available in the literature.
It can be seen that the predictions from the analysis compare well
against experimental data, for both the planar and axisymmetric
cases. The only deviation is for Smith and Glezer [1]; however,
these authors reported that u scales as x�0:5 which is in agreement
with our analysis. Although the streamwise variation of turbulent
velocity scale has not been documented in the table, u, wherever
else reported, has been found to follow the same variation as Us.

When comparing with conventional jets it should be kept in
mind that, although the streamwise variation of velocity and
length scales are similar between the two cases, the coefficients c
and c2 (in Eqs. (23) and (24)) may be quite different, making the
flow different in appearance and also quantitatively. Such differ-
ences have been explored by Smith and Swift [15] among others.
For example, Cater and Soria [5] report that the streamwise veloc-
ity for axisymmetric synthetic jet decays about seven times faster
as compared to axisymmetric continuous jet. Hussein et al. [11]
discuss the important role of initial condition in turbulent (contin-
uous) jets. The mechanism of jet formation is entirely different be-
tween synthetic and continuous jets and differences should
therefore not be unexpected.

We now examine the assumptions made in deriving the simpli-
fied form of momentum equation (Eq. (13) or (17)) with synthetic
jet. Besides the assumption of large Reynolds number, the other
primary assumptions are that both l=L and u=Us are of order unity.
Table 2 summarizes the values of some of the relevant parameters.
The measurements of Smith and Glezer [1] are for 12 6 x=d 6 80
and at a Reynolds number of 383. The data of Cater and Soria [5]
has been collected between x=d ¼ 4 to 74, at two different Rey-
nolds numbers. Besides these, the measurements of Smith and
Swift [15] suggest a spread rate of about 0.19 for planar synthetic
jet. Similarly, the data of Mallinson et al. [14] suggest u2=U2

s ¼ 0:16
at x=d ¼ 27 for axisymmetric synthetic jet.

As is apparent from Table 2, the spread rate of synthetic jet is
about twice of their continuous counterparts, at least in the planar
case. Although it is probably acceptable to neglect terms of order
l=L for continuous jets (as has been done, for example, by Tennekes
and Lumley [17]), one should refrain from making such simplifica-
tion for synthetic jets. Similarly, the data in the table suggests that
u=Us is at least 0.24 and 0.36 for planar and axisymmetric jets,
respectively, and therefore, these two velocity scales can be re-
garded as being of order unity. The last two rows in Table 2 shows
Table 1
Comparison of centerline velocity decay and jet half-width from various sources

Configuration of jet Source Us l Comment

Planar synthetic Smith and Glezer [1] x�0:58 x0:88 Experimental
Smith and Swift [15] x�0:5 x Experimental
Present x�0:5 x Similarity analysis

Planar continuous Tennekes and Lumley
[17]

x�0:5 x Similarity analysis

Axisymmetric
synthetic

James et al. [2] x�1 x Experimental

Mallinson et al. [14] x�1 x Experimental
Cater and Soria [5] x�1 x Experimental
Travnicek et al. [21] x�1 – Experimental
Present x�1 x Similarity analysis

Axisymmetric
continuous

Tennekes and Lumley
[17]

x�1 x Similarity analysis
that v2 and uv are of the same order as u2, as assumed above.
Therefore, the assumptions made in the analysis seem to be
reasonable.

4.2. Further analysis

In a manner similar to Agrawal and Prasad [19], by assuming a
Gaussian streamwise velocity profile (suggested, for example, by
the experiments of Smith and Glezer [1], Cater and Soria [5]), i.e.,
using f ðnÞ ¼ expð�n2Þ in Eq. (19), an expression for V can be de-
rived by employing Eq. (22), as

V
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: ð25Þ

Similarly, for axisymmetric synthetic jet, we would obtain

V
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2n
�1þ expð�n2Þ þ 2n2 expð�n2Þ
� �

: ð26Þ

The interesting consequences of Eqs. (25) and (26), as first
pointed out by Agrawal and Prasad [19], are: first, there is a change
in sign for V at n � 1:3, which suggests an outflow near the center-
line of the jet and inflow far away from it. The presence of outflow
near the centerline is perhaps contrary to the notion of entrain-
ment in turbulent jets. The reason for outflow is the decay of the
centerline velocity (and not the assumption of a Gaussian velocity
profile). Note that a bigger value of spread rate, c, implies a stron-
ger outflow for synthetic jets as compared to their continuous
counterparts. Second, care has to be taken while defining the
entrainment velocity at the ‘edge’ of the jet, at least in the case
of axisymmetric jet. This is apparent after plotting Eq. (26) which
shows that V does not become constant for any value of n.

Agrawal and Prasad [19] went further to derive expressions for
uv and turbulent eddy viscosity, using the simplified momentum
Eq. (9). Such an analysis is however not possible in the present case
unless the function H (in Eq. (21)) is explicitly specified.

5. Concluding remarks

A similarity analysis of planar and axisymmetric turbulent syn-
thetic jets has been discussed in this paper, perhaps for the first
time. Considering that, although self-similarity was seen from
the experimental data about a decade back, no theoretical attempt
has been made to derive the scaling relationships, our analysis
should assume significance. The governing equations are first de-
rived for flow in the self-similar regime; these equations are much
more involved than for conventional jets revealing the complexity
of synthetic jets. A similarity analysis is then performed and the
streamwise variation of centerline velocity and jet half-width are
obtained. The number of assumptions in the analysis is reasonably
small and these have been justified from the experimental data in
the literature. Interestingly, the analysis predicts the same stream-
wise variation for synthetic jets as their continuous counterparts.
The coefficients are however different between the two cases,
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leading to different flow features. It is argued that the momentum
flux in the self-similar region of synthetic jets should remain con-
served, but with a value less than that supplied at the source.

The most important difference between continuous and syn-
thetic jets arises due to a larger spread rate of synthetic jets. An
analysis of the sort presented in the paper is expected to trigger
further development on the understanding of synthetic jets. For
example, the negligible role of pressure in the self-similar region
conjectured here needs to be experimentally verified; similarly,
the functional form of u2 should be determined to allow integra-
tion of the mean streamwise momentum equation. The results
are significant because they tend to clearly bring out the similari-
ties and differences of synthetic jets with respect to their continu-
ous counterparts, the latter flows have been extensively studied in
the literature.
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